Information fusion in multi-task Gaussian processes
نویسندگان
چکیده
This paper evaluates heterogeneous information fusion using multi-task Gaussian processes in the context of geological resource modeling. Specifically, it empirically demonstrates that information integration across heterogeneous information sources leads to superior estimates of all the quantities being modeled, compared to modeling them individually. Multi-task Gaussian processes provide a powerful approach for simultaneous modeling of multiple quantities of interest while taking correlations between these quantities into consideration. Experiments are performed on large scale real sensor data.
منابع مشابه
Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks
The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...
متن کاملMulti-task Sparse Gaussian Processes with Improved Multi-task Sparsity Regularization
Gaussian processes are a popular and effective Bayesian method for classification and regression. Generating sparse Gaussian processes is a hot research topic, since Gaussian processes have to face the problem of cubic time complexity with respect to the size of the training set. Inspired by the idea of multi-task learning, we believe that simultaneously selecting subsets of multiple Gaussian p...
متن کاملSHEF-Lite 2.0: Sparse Multi-task Gaussian Processes for Translation Quality Estimation
We describe our systems for the WMT14 Shared Task on Quality Estimation (subtasks 1.1, 1.2 and 1.3). Our submissions use the framework of Multi-task Gaussian Processes, where we combine multiple datasets in a multi-task setting. Due to the large size of our datasets we also experiment with Sparse Gaussian Processes, which aim to speed up training and prediction by providing sensible sparse appr...
متن کاملInfinite Shift-invariant Grouped Multi-task Learning for Gaussian Processes
Multi-task learning leverages shared information among data sets to improve the learning performance of individual tasks. The paper applies this framework for data where each task is a phase-shifted periodic time series. In particular, we develop a novel Bayesian nonparametric model capturing a mixture of Gaussian processes where each task is a sum of a group-specific function and a component c...
متن کاملShift-Invariant Grouped Multi-task Learning for Gaussian Processes
Multi-task learning leverages shared information among data sets to improve the learning performance of individual tasks. The paper applies this framework for data where each task is a phase-shifted periodic time series. In particular, we develop a novel Bayesian nonparametric model capturing a mixture of Gaussian processes where each task is a sum of a group-specific function and a component c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1210.1928 شماره
صفحات -
تاریخ انتشار 2012